М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nikbomba
nikbomba
26.10.2022 05:53 •  Геометрия

На рисунках изображены тетраэдры. постройте сечение этих тетраэдров плоскостью, проходящей через прямую мк и точку р, зная, что мк параллельно ав, точка р принадлежит плоскости авс.

👇
Ответ:
Пикачу24456
Пикачу24456
26.10.2022
Если через прямую МК, параллельную плоскости АВС, провести плоскость, пересекающую плоскость АВС, то МК будет параллельна линии пересечения. Построение производится на основе этой теории.
4,8(69 оценок)
Открыть все ответы
Ответ:
Utugav
Utugav
26.10.2022
1.Цилиндр.Задача 1: 1)

S бок = 2пRh = п(2 * 4 * 7) = 56п см²

S полн поверхности = 2пR(R + h) = п(8 * 4 + 8 * 7) = 88п см²

ответ: 56п см², 88п см²

(к 1 задаче рисунка нет)

Задача 1: 2)

Так как h (на рисунке ОО1) = 8 см => АВ = CD = h = 8 см

D = 2R = 3 * 2 = 6 см => ВС = AD = D = 6 см

Найдём АС, по теореме Пифагора:

с² = а² + b²

c = √(a² + b²) = √(6² + 8²) = √(36 + 64) = √100 = 10 см

ответ: 10 см.

Задача 1: 3)

S бок = 0,5S полн поверхности, по условию.

S полн поверхности = 2S осн + S бок

2S бок = 2S осн+ S бок

S бок = 2S осн

2пRh = 2пR²

h = R

АС = 5 см, по условию.

Найдём радиус R, по теореме Пифагора, а именно составим уравнение:

с² = а² + b²

АС² = CD² + AD²

5² = R² + (2R)²

25 = 5R²

5 = R²

R = √5

Итак, R = √5 см

Мы узнали, что h = R => h = √5 см

=> S полн поверхность = 2пR(R + h) = 2п√(5)(√(5) + √(5)) = 20п см²

ответ: 20п см²

-------------------------------------2. Конус.Задача 2: 1)

R = D/2 = 24/2 = 12 см

S бок = пRl = п(12 * 13) = 156п см²

S полн поверхности = S осн + S бок = пR² + пRl = 144п + 156п = 300п см²

Найдём h, по теореме Пифагора:

с² = а² + b²

a = √(c² - b²) = √(13² - 12²) = √(169 - 144) = √25 = 5 см

Итак, h = 5 см

ответ: 5см, 300п см², 156п см²

Задача 2: 2)

Осевое сечение конуса (если ось плоскость проходит через ось конуса) - равнобедренный треугольник, а высота SO делит этот равнобедренный треугольник на два равных прямоугольных треугольника KSO и CSO(их равенство можно доказать по всем признакам равенства прямоугольных треугольников, исходя из того, что △KSC - равнобедренный)

Итак, △KSC - осевое сечение этого конуса.

SO - высота конуса.

MI - высота сечения, параллельного осевому.

△MCI подобен △SCO с коэффициентом подобия k = IC/OC

IC = OC - OI = 6 - 2 = 4 см

Итак, k = 4/6 = 2/3

MI = SO * k = 12 * 2/3 = 8 см

Рассмотрим △OIL:

OL = 6 см - радиус основания конуса.

OI = 2 см, по условию.

Найдём IL, по теореме Пифагора:

с² = а² + b²

a = √(c² - b²) = √(6² - 2²) = √(36 - 4) = √32 = 4√2 см

S△LMT = 1/2MI * LT = IL * MI = 4√2 * 8 = 32√2 см²

ответ: 32√2 см²

-------------------------------------3. Усечённый конус.Задача 3: 1)

NC = 6 см, по условию. (r)

KD = 11 см, по условию.(R)

LD = KD - NC = 11 - 6 = 5 см

Найдём высоту CL, по теореме Пифагора:

с² = а² + b²

a = √(c² - b²) = √(13² - 5²) = √(169 - 25) = √144 = 12 см

Итак, CL = 12 см

S бок = п(R + r) * l = (6 + 11) * 13 = 221п см²

S полн поверхности = п(R + r) * l + пR² + пr² = п(11 + 6) * 13 + п(11)² + п(6)² = 378п см²

ответ: 12 см, 221п см², 378п см².

Задача 3: 2)

D = ВС = 14 см, по условию.

D = AD = 48 см, по условию.

R = BT = TC = D/2 = 14/2 = 7 см

R = AK = KD = D/2 = 48/2 = 24 см

TC = 7 см (r)

KD = 24 см (R)

FD = KD - TC = 24 - 7 = 17 см

Рассмотрим △FCD:

он прямоугольный, так как CF - высота..

Сумма острых углов прямоугольного треугольника равна 90°

=> ∠FCD = 90˚ - 60˚ = 30˚

Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.

=> CD = 17 * 2 = 34 см

S бок = п(R + r) * l = п(24 + 7) * 34 = 1054п см²

ответ: 1054п см² .


1. Цилиндр 1) Дан цилиндр высотой 7 см и радиусом основания 4 см. Найдите площади боковой и полной п
1. Цилиндр 1) Дан цилиндр высотой 7 см и радиусом основания 4 см. Найдите площади боковой и полной п
1. Цилиндр 1) Дан цилиндр высотой 7 см и радиусом основания 4 см. Найдите площади боковой и полной п
4,8(47 оценок)
Ответ:
yohoho365
yohoho365
26.10.2022

Площадь S‍1 ‍ боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.

‍ Значит, S‍1 = 3al = 18

‍ПустьS --‍ площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60‍∘.

‍ Поэтому

S2= 2√3

Следовательно, площадь полной поверхности призмы равна



 = 18 + 4√3
4,6(99 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ