Основи рівнобічної трапеції = 10 і 26 см, а бічна сторона = меншій основі. трапеція обертається навколо прямої, яка містить її більшу основу. знайти площу поверхні тіла обертання.
Пирамида правильная, значит в основании лежит правильный треугольник. ВСЕ ребра равны. Следовательно ВСЕ грани - равные правильные треугольники. Значит апофема (высота боковой грани) равна высоте основания пирамиды. Высота правильного треугольника находится по формуле (√3/2)*а, где а - сторона треугольника. В нашем случае DH=DO=√3. Или так: по Пифагору, например из треугольника ADH: DH=√(AD²-AH²) или DH=√(4-1)=√3. (АН=0,5АС - так как DH - высота и медиана правильного треугольника АDС) Итак, апофему нашли. В правильной пирамиде высота из вершины проецируется в центр основания О. В правильном треугольнике АВС высота ВН делится точкой о в отношении 2:1, считая от вершины В. Значит ОН= √3/3. (так как ВН=DH=√3). Тогда из прямоугольного треугольника DOH найдем по Пифагору DO. DO=√(DH²-OH²) или DO=√(3-3/9)=2√(2/3) = 2√6/3. ответ: апофема равна √3, высота пирамиды равна 2√(2/3) или 2√6/3.
1
1) δавс, ∟авс = 35 °, ∟асв = 83 °, вм и ск -
высоты, пересекаются в н. найходим внс.
2) δавс.
∟а = 180 ° - (∟abc + ∟асв),
∟а = 180 ° - (35 ° + 83 °) = 62 °.
3) δавм.
∟amb = 90 ° (вм - высота),
∟abm = 180 ° - (∟амв + ∟a), ∟abm = 28 °.
4) δквс.
∟вкс = 90 ° (ск - высота),
∟вск = 180 ° - (∟вкс + ∟квс),
∟вск = 55 °, ∟abc = 35 °,
∟abc = ∟abm + ∟mbc, 35 ° = 28 ° + ∟mbc, ∟mbc = 7 °.
5) δнвс.
∟нвс = 7 °, ∟bch = 55 °,
∟внс = 180 ° - (∟hbc + ∟всн),
∟внс = 180 ° - (7 ° + 55 °), ∟bhc = 180 ° - 62 ° = 118 °.
ответ 118
это точно все дано или было что-то еще?