Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
1) По стороне правильного треугольника можно его вычислить площадь:
S = a²√3 / 4 = (16√3)² · √3 / 4 =64√3 см²
высота этого треугольника:
h = a√3 / 2 = 16 · √3 · √3 / 2 = 24 см
треть высоты:
r = 24 ÷ 3 = 8 см (радиус вписанной в него окружности)
Высота пирамиды, апофема и радиус вписанной в основание пирамиды окружности образуют прямоугольный треугольник:
17² = 8² + H² (теорема Пифагора), где H - высота пирамиды:
H² = 17² - 8² = (17 - 8)(17 + 8) = 9 · 25 ⇒ H = 15 см
V = 1/3 · Sосн · H = 1/3 · 64√3 · 15 = 320√3 см³