параллелограмм АВСД, АК/КВ=2/1=2у/у, АЛ/ЛД=1/3=х/3х, АД=х+3х=4х=ВС, ВМ/МС=1/1 или 2х/2х, из точки Л проводим линию ЛЕ параллельную АВ на ВС, АЛ=ВЕ=х=ЕМ, треугольник ВЛМ ЛЕ-медиана которая делит его на два равновеликих треугольника, S ВЛЕ= S ЕЛМ =S, площадь ВЛМ=S ВЛЕ + S ЕЛМ =2S, АВ=АК+КВ=у+2у=3у, АВМЛ-параллелограм ЛВ-диагональ, площ.АВЛ=площВЛЕ= S, из точки Л проводим высоту ЛТ на АВ, площ.АВЛ=1/2*АВ*ЛТ=1/2*3у*ЛТ, площ.КВЛ=1/2*ВК*ЛТ=1/2*у*ЛТ, площАВЛ/площКВЛ=(1/2*3у*ЛТ)/(1/2*у*ЛТ)=3/1, 3*площ.КВЛ=площАВЛ=S, площКВЛ=S/3, площКВЛ/площВЛМ=(S/3)/2S=1/6
Обозначим точку касания как К. Соединим К с центром О. ОК - радиус окружности и перпендикулярен касательной по определению. Более того, он проходит через середину хорды АВ и перпендикулярен ей. Доказательство: АВ параллельно касательной К, следовательно ОК перпендикулярно АВ, поскольку перпендикулярно касательной. Соединим О с концами хорды АВ и получим равнобедренный треугольник АВО, в котором высота ОК является одновременно и медианой, т.е хорда АВ делится пополам. Следовательно отрезок соединяющий точку касания и точку пересечения хорды с радиусом ОК является искомым расстоянием. Обозначим точку пересечения хорды АВ с радиусом ОК через D. Тогда нам надо найти отрезок КD. Рассмотрим треугольник АОD. Он прямоугольный. АО - гипотенуза и равна 65 по условию, т.к. она радиус. АD - катет и равен половине АВ, т.е. 63. Далее по теореме Пифагора находим второй катет - АО. И находим расстояние. Это будет ОК-АО.