1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
Sбок ==> ?
Середина M стороны BC соединим с вершиной пирамиды D и вершиной A ;
Угол DMA будет линейным углом между плоскостями DBC и ABC
[(DBC )^ (ABC) =α] .Действительно AM ┴ BC и DM ┴ BC
( а BC линия пересечения граней DBC и ABC) .
C другой стороны DA ┴(ABC) ⇒DA┴AB ; DA ┴ AC .Поэтому
Sбок =S(BDA) +S(CDA) +S(BDC) =1/2*a* DA +1/2*a*DA +S(BDC) ;
Sбок =a*DA +S(BDC) .
Из ΔMDA : DA=AM*tqα=a√3/2*tqα =a√3/2 *tqα .
S(BDC) =1/2*BC*DM =1/2*BC*BM/cosα =S(ABC)/cosα ;
S(BDC) = a²√3/4)/cosα.
Sбок =a*a√3/2*tqα + a²√3/4)/cosα =(a²√3/4)(2tqα+1/cosα).
Sбок = 6²√3/4(2tq60° + 1/cos60°) =9√3(2√3 +2) =18√3(√3+1) или иначе Sбок =18(3+√3).
ответ : 18(3+√3) .