Биссектрисы внутренних углов параллелограмма abcd образуют четырёхугольник efgh, каждая вершина которого получена как пересечение двух биссектрис. найти сумму квадратов длин всех сторон четырехугольника efgh, если ab=bc+3/2 заранее
сумма углов, примыкающих к стороне, равна 180 градусам, поэтому сумма их половин, отсекаемых биссектрисами, равна 90 градусам. отсюда следует, что efgh -- прямоугольник, и сумма квадратов его сторон равна удвоенному квадрату диагонали.
пусть e -- точка пересечения биссектрис углов a и d. середина k стороны ad равноудалена от вершин прямоугольного треугольника ade. при этом угол ked равен kde, а также cde, поэтому ke параллельна cd и является частью средней линии kl параллелограмма. на этой же линии лежит и точка g из аналогичных соображений.
таким образом, eg=kl−ke−gl=ab−1\2ad−1\2bc=ab−ad=3\2 есть длина диагонали. следовательно, в ответе получится 2(3\2)2=9\2.
Что бы вписать окружность в трапецию, необходимо что бы суммы противоположных сторон были равны. Следовательно сумма двух равных боковых сторон (20) должна равняться сумме двух оснований трапеции. Тогда второе основание соответственно равно 18 см. Площадь трапеции это полусумма оснований умноженная на высоту. Так как трапеция равнобедренная можем найти высоту: Опустим две высоты к большему основанию и получим три фигуры: два равных прямоугольных треугольника и прямоугольник. Катет прямоугольного треугольника будет равен: (18-2):2=8 см. А гипотенуза 10 см. По теореме Пифагора найдем второй катет: 10^2=8^2+х^2 100=64+х^2 х^2=36 х=6 Высота трапеции равна 6 см. Можем найти площадь: S=(2+18)/2 *6 S=20/2 *6 S=10*6 S=60 см^2. ответ: площадь трапеции равна 60 см^2.
ответ:
сумма углов, примыкающих к стороне, равна 180 градусам, поэтому сумма их половин, отсекаемых биссектрисами, равна 90 градусам. отсюда следует, что efgh -- прямоугольник, и сумма квадратов его сторон равна удвоенному квадрату диагонали.
пусть e -- точка пересечения биссектрис углов a и d. середина k стороны ad равноудалена от вершин прямоугольного треугольника ade. при этом угол ked равен kde, а также cde, поэтому ke параллельна cd и является частью средней линии kl параллелограмма. на этой же линии лежит и точка g из аналогичных соображений.
таким образом, eg=kl−ke−gl=ab−1\2ad−1\2bc=ab−ad=3\2 есть длина диагонали. следовательно, в ответе получится 2(3\2)2=9\2.
объяснение: