Обозначим треугольник АВС, угол С = 90 град., АС = 8 см, ВС = 6 см. Меньшая высота в треугольнике проведена к большей стороне. Самая большая сторона в прямоугольном треугольнике является гипотенузой. Найдем ее по теореме Пифагора. АВ = V(АС^2 + ВС^2) = V(8^2 + 6^2) = V(100) = 10 см. Из угла С проведем к гипотенузе высоту СD. Рассмотрим два треугольника : АВС и АDС. Они являются подобными, так как угол А у них общий и оба они прямоугольные. Из подобия запишем : ВС/АВ = СD/АС Отсюда СD = ВС*АС/АВ = 6*8/10 = 4,8 см.
ABCA1B1C1 - правильная треугольная призvf
AB=8см
AA1=6см
Найти S сеч. -?
Решение:
1)Построим сечение:
(B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина))
Проводим B1A в (AA1B1B)
Проводим АС1 в (АА1С1С)
В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1
2)по теореме Пифагора из треугольника AA1B1 - прямоугольного:
B1A^2 = AA1^2+A1B1^2
отсюда:
B1A^2= 36+64=100
B1A=10
3) по формуле:
S=√p(p-a)(p-b)(p-c)
S=√14*4*4*6=8√21
ответ:8√21
или можно найти высоту АН сечения, она равна 2√21
и потом находим S=a*h/2
S=8*2√21/2=8√21