Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
В равнобедренном треугольнике углы при основании равны, значит <ABC=<ACB=(180-<BAC)/2=(180-80)/2=50° <АВМ=<АВС-<МВС=50-30=20° <АСМ=<АСВ-<МСВ=50-10=40° Рассмотрим треугольник ВМС: <ВМС=180-<МВС-<МСВ=180-30-10=140°. По теореме синусов МС/sin 30=BC/ sin 140 MC=BC*sin 30/sin 140=BC/2sin (180-40)=BC/2sin 40 Если в треугольнике АВС из вершины А опустить высоту АН на основание ВС, то она же будет и медиана и биссектриса. Из полученного треугольника АНС (<НАС=80/2=40°, <АНС=90°, НС=ВС/2) по теореме синусов НС/sin 40=АC/ sin 90 АC=BC/2sin 40 Получается, что МС=АС, значит треугольник АМС - равнобедренный <САМ=<АМС=(180-<ACM)/2=(180-40)/2=70°.
км=кс*cos50
мс=кс*sin50
S=км*мс=кс^2*cos50*sin50=кс^2*sin100/2=81* 0.985/2=39.8925