3) Предположим, что в треугольнике 2 угла тупые. Тогда Сумма углов будет больше 180 градусов, что противоречит теореме о сумме углов треугольника. 6) Пусть угол C>угла B. Тогда AB>AC. Предположим, что это не так. Тогда либо AB=AC или AB<AC. Если разобрать первый случай, то треугольник ABC-равнобедренный и значит угол C=углу B. Во втором случае угол B> угла C, а это противоречит условию C>B. Поэтому AB>AC 7-11 на фотографиях 11) Если в треугольнике есть угол равный 30 градусам. то катет, лежащий против него равен половине гипотенузы
В круге с центром О, изображенном на рисунке, проведена хорда АВ, которая равна радиусу круга. Через точки А и В, проведены касательные к кругу, которые пересекаются в точке С. Найдите угол АСВ ---------------- Рисунок не дан, сделаем его - он несложный. Соединим А и В с центром круга. Так как хорда равна радиусу круга, получившийся треугольник АОВ - равносторонний, и все углы в нем равны 60°. Углы ОАС и ОВС - прямые по свойству радиуса и касательных. Угол АОВ = 60°. Сумма углов четырехугольника равна 360°. Угол АСВ=360-ОАС - ОВС - АОВ=360-(2*90°-60°)=120°
6) Пусть угол C>угла B. Тогда AB>AC. Предположим, что это не так. Тогда либо AB=AC или AB<AC. Если разобрать первый случай, то треугольник ABC-равнобедренный и значит угол C=углу B. Во втором случае угол B> угла C, а это противоречит условию C>B. Поэтому AB>AC
7-11 на фотографиях
11) Если в треугольнике есть угол равный 30 градусам. то катет, лежащий против него равен половине гипотенузы