Вертикальная башня высотой 35корень 3м медиана из точки к на поверхности земли под углом 60 градусов найдите расстояние от точки к до основании башни и до самой высокой башни там есть продолжение до завтра
Плоскость можно задать одним из - Три любые точки - Прямая и точка, не лежащая на ней - Две параллельные прямые - Две пересекающиеся прямые
Если даны 4 точки, то через три из них пройдет одна единственная плоскость, однако про четвертую точку ничего однозначно сказать нельзя - она может как лежать в этой плоскости, так и не лежать в ней.
Два примера на картинке: в обоих случаях через три красные точки проведена плоскость, но в первом четвертая зеленая точка не принадлежит этой плоскости, а во втором - принадлежит.
Допустим, даны точки А, В, С, D. Проведем прямые АВ и CD. Если полученные прямые параллельны или пересекающиеся, то (смотрим задания плоскости) через все четыре точки можно провести одну плоскость. Но если прямые АВ и CD будут скрещивающимися, то такую плоскость провести будет невозможно, провести можно будет только плоскость, проходящую через некоторые три точки из этих четырех.
В основании правильной пирамиды лежит правильный многоугольник, а его вершина проецируется в центр основания. Значит в основании пирамиды Хеопса лежит квадрат. Площадь квадрата равна его стороне в квадрате, а гектар =10000м². Итак, сторона квадрата равна 100*√5,3 м. Соответственно, половина стороны равна 50√5,3м. Угол наклона бокового ребра к основанию - это угол в прямоугольном треугольнике с катетами: высота и половина стороны основания, а гипотенуза - апофема грани. Зная два катета - знаем тангенс угла наклона: tgα=h/(a/2) или 147/(50√5,3) = 1,28. Значит угол равен 52 градуса. ответ: угол наклона боковой грани к плоскости основания пирамиды Хеопса равен 52°
В условии задачи не должно быть не "медиана", а "видна". Тогда задача решается через отношения сторон в прямоугольном треугольнике.
Объяснение:
На ютубе есть подробный разбор этой задачи. Набери : "4. Геометрия, 8 класс, СОР за II четверть" на канале
Учебный центр Lessons.