М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pragravra
pragravra
08.05.2021 20:24 •  Геометрия

Ab-ac=8,5 см pabc=37 найти ab-? bc-? ac-?

👇
Открыть все ответы
Ответ:
Kakation
Kakation
08.05.2021

Перпендикуляр от точки к прямой

Отрезок AC называется перпендикуляром, проведённым из точки A прямой a , если прямые AC и a перпендикулярны.

пер3.jpg

Точка C называется основанием перпендикуляра.

От точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Perpendikuls.png Perpendikuls1.png

Докажем, что от точки A , не лежащей на прямой BC , можно провести перпендикуляр к этой прямой.

Допустим, что дан угол ∡ABC .

Отложим от луча BC угол, равный данному, и совместим эти углы накладыванием (представим, что сложим лист бумаги с равными углами по стороне BC ).

Сторона BA совместится со стороной BA1 .

При этом точка A наложится на некоторую точку A1 .

Следовательно, совмещается угол ∡ACB с ∡A1CB .

Но углы ∡ACB и ∡A1CB — смежные, значит, каждый из них прямой.

Прямая AA1 перпендикулярна прямой BC , а отрезок AC является перпендикуляром от точки A к прямой BC .

Если допустить, что через точку A можно провести ещё один перпендикуляр к прямой BC , то он бы находился на прямой, пересекающейся с AA1 . Но две к одной и той же прямой перпендикулярные прямые должны быть параллельны и не могут пересекаться.

Это противоречие, что означает: через данную точку к прямой можно провести только один перпендикуляр.

Медианы, биссектрисы и высоты треугольника

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Поэтому для построения медианы необходимо выполнить следующие действия:

1. найти середину стороны;

2. соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.

Mediana.png

У треугольника три стороны, следовательно, можно построить три медианы.

Все медианы пересекаются в одной точке.

Mediana1.png

Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.

Поэтому для построения биссектрисы необходимо выполнить следующие действия:

1. построить биссектрису какого-либо угла треугольника (биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);

2. найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3. соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса треугольника.

Bisektrise.png

У треугольника три угла и три биссектрисы.

Все биссектрисы пересекаются в одной точке.

Bisektrise1.png

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.

Поэтому для построения высоты необходимо выполнить следующие действия:

1. провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2. из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней (перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол 90° ) — это и будет высота.

Augstums.png

Так же как медианы и биссектрисы, треугольник имеет три высоты.

Высоты треугольника пересекаются в одной точке.

Augstums1.png

Но, как выше упомянуто, для некоторых видов треугольников построение высот и точки их пересечения отличаются.

Если треугольник с прямым углом, то стороны, образующие прямой угол, можно назвать высотами, так как они перпендикулярны одна к другой. Точкой пересечения высот является общая вершина перпендикулярных сторон.

Augstums2.png

Если треугольник с тупым углом, то высоты, опущенные с вершин острых углов, выходят вне треугольника к продолжениям сторон. Прямые, на которых расположены высоты, пересекаются вне треугольника.

Augstums3.png

Если из одной и той же вершины провести медиану, биссектрису и высоту, то медиана окажется самым длинным отрезком, а высота — самым коротким отрезком.

4,8(31 оценок)
Ответ:
SanchesMaster
SanchesMaster
08.05.2021
Задание 1. В правильной пирамиде площадь основания составляет 1/3 площади полной поверхности. Найти двугранный угол при основании пирамиды. 

Примем длину стороны a основания за 1, периметр Р = 3а = 3.
Тогда площадь основания So = a²√3/4 = √3/4.
Площадь полной поверхности S =3So = 3√3/4.
Площадь боковой поверхности равна:
 Sбок = S - So = (3√3/4) - (√3/4) = 2√3/4 = √3/2.
А так как Sбок = (1/2)РА, то апофема А равна:
 А = 2Sбок/P = 2*(√3/2)/3 = √3/3.
Высота основания h = a*cos30° = 1*(√3/2) = √3/2.
Проекция апофемы на основание в правильной треугольной пирамиде равна (1/3)h = √3/6.
Двугранный угол между боковой гранью и основанием равен плоскому углу α между апофемой и её проекцией на основание.
cos α = ((1/3)h/A) = (√3/6)/(√3/3) = 3/6 = 1/2.
α = arc cos(1/2) = 60°.

Задание 2. В правильной четырехугольной пирамиде боковое ребро образует со стороной основания угол β. Отрезок, который соединяет центр вписанной в боковую грань окружности с вершиной основания этой грани, равен 1. Определить боковую поверхность пирамиды.

Заданный отрезок длиной 1 - это часть биссектрисы угла боковой грани при основании от вершины до пересечения с апофемой.
Сторона а основания равна:
а = 2*1*cos(β/2) = 2cos(β/2). Периметр основания Р = 4а = 8cos(β/2).
Апофема А равна:
А = (а/2)*tgβ = cos(β/2)*tgβ.
Тогда Sбок = (1/2)РА = (1/2)*(8cos(β/2))*(cos(β/2)*tgβ) = 4cos²(β/2)*tgβ
(можно заменить функцию половинного угла на целого, но формула получится более громоздкая).
4,4(35 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ