Схема здесь простая. Как указано в задании , так и строим. Оложим все отрезки и соединим точки А, L,Е одной прямой. Рассмотрим треугольники LFE и KFM. У них углы KFM и LFE равны , LF=FM, KF=FE(по условию). Следовательно эти треугольники равны. Против равных углов в треугольнике лежат равные стороны и наоборот. Отсюда угол LEF=углуFKM. Значит LE параллельна КМ. Аналогично доказываем параллельность AL и KM (трекгольники ALD и KDM). То есть получили - отрезки AL и EL параллельны одной прямой KM, и точка L у них общая. Значит отрезки AL и LE являются отрезками одной прямой АЕ и точка L лежит на ней. Поскольку через три точки можно провести прямую если только они все лежат на этой прямой.
Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
Схема здесь простая. Как указано в задании , так и строим. Оложим все отрезки и соединим точки А, L,Е одной прямой. Рассмотрим треугольники LFE и KFM. У них углы KFM и LFE равны , LF=FM, KF=FE(по условию). Следовательно эти треугольники равны. Против равных углов в треугольнике лежат равные стороны и наоборот. Отсюда угол LEF=углуFKM. Значит LE параллельна КМ. Аналогично доказываем параллельность AL и KM (трекгольники ALD и KDM). То есть получили - отрезки AL и EL параллельны одной прямой KM, и точка L у них общая. Значит отрезки AL и LE являются отрезками одной прямой АЕ и точка L лежит на ней. Поскольку через три точки можно провести прямую если только они все лежат на этой прямой.