1) BT-биссектриса
BD-высота
BE-медиана
MN-средняя линия
2) КЕ-общая
КА и КС- равные (по усл.)
т.к. КЕ биссектриса, значит углы АКЕ=ЕКС
по теореме, по двум сторонам и углу между ними, значит, что угол равен, прямые между ними тоже равны, прямые КА и КС равны по условию, а КЕ-общая, значит равная.
3) ВД- медиана и биссектриса по св-ву, из этого следует, что угол ВДС=90
угол А=С
АД=ДС
АВ=ВС
треугольники АВД и ДВС равны по двум сторонам и углу между ними
угол 1 и угол ВАД- смежные, из этого следует, угол 1 + угол ВАД=180
ВАД=180-106=74
4)а) АДВ=ВДС - по условию
АД=ДС
ВД- общая
АВ=ВС, из этого следует, что треугольники равны
ч.т.д.
Объяснение:
Их высота - это апофема А.
Она равна 1*cos 30° = √3/2.
Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД.
В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды.
d = a√2 = 1*√2 = √2.
По теореме косинусов:
cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3.
Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен:
<M = arc cos(1/3) = 1,230959 радиан = 70,52878°.