Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.
В прямоугольном треугольнике катету противолежит острый угол ( прямой противолежит гипотенузе) и сумма острых углов 180°-90°=90°.
Поэтому: если противолежащий катету острый угол одного прямоугольного треугольника равен противолежащем острому углу другого, то прилежащие к равным катетам острые углы также равны
К равным катетам этих треугольников прилежат равные углы: прямой ( по условию) и найденный острый.
Такие прямоугольные треугольники равны по 2-му признаку равенства треугольников, т.е. по стороне и прилежащим к ней углам.
ΔAOD - равнобедренный => AO=DO
∠BAC=∠CDB
ΔBAO имеет общую сторону с ΔAOD
ΔCOD имеет общую сторону с ΔAOD
Следовательно ΔBAO и ΔCOD имеют AO=DO
Рассматриваемые треугольники соприкасаются с боковыми сторонами треугольника и имеют равный угол отклонения от них ∠BAO=∠CDO
Из чего можно сделать вывод, что ∠BOA=∠CОD.
Т.к. в ΔBAO и ΔCOD:
1)AO и OD выступают боковыми сторонами равнобедренного треугольника из чего следует, что они равны, а значит это равносильно и для ΔBAO и ΔCOD.
2)На основе пересечения данных по условию углов и свойств равнобедренного треугольника следует, что ∠BOA=∠CОD
3)Т.к. ∠BAO=∠CDO и ∠BOA=∠CОD делаем вывод, что и ∠ABO=∠DCO
А значит и AB=CD