Диагонали ромба делятся точкой пересечения пополам. (Потому что диагонали параллелограмма так делятся, а ромб - то же самое что и параллелограмм) И угол между ними равен 90 градусов. Тогда пусть точка пересечения диагоналей - О, пусть А - левая вершина ромба, С - правая, В - верхняя, Д - нижняя. (Ну нарисуй так). Тогда АО=12:2=6, ОД=9:2=4.5. Тогда по теореме Пифагора находим АД. АД=ДС (т.к. АВСД - ромб), теперь есть треугольник АСД в которой ты знаешь три стороны. У него есть угол Д, можно найти из теоремы косинусов. косД=(AD^2+DC^2-AC^2)/2AD*DC=(2AD^2-AC^2)/2AD^2=-AC^2/2AD^2
Сделайте рисунок, если найдете это нужным. Он очень простой. Пусть дан треугольник АВС, в котором АВ=ВС. Основание треугольника АС равно 20 см. Медиану из вершины В рассматривать не будем - она не может делить треугольник на два с разными периметрами. Медианы из А и С делят исходный треугольник одинаково. Поэтому в принципе это одно и то же решение. Проведем медиану АМ из А к ВС. Примем сторону АВ=2х см, тогда медиана АМ делит ВС на две части по х см каждая. Р (АВМ)= АВ+ВМ+АМ=2х+х+АМ=3х+АМ Р(АСМ)= АС+СМ+АМ=20+х+АМ Вариант1) Р(АВМ)-Р(АСМ)=6 см Тогда 3х+АМ-(20+х+АМ)=6 2х-20=6 2х=26 см 2х=АВ=ВС=26 см Вариант 2) Р(АСМ)-Р(АВМ)=6 20+х+АМ-(3х+АМ)=6 2х=АВ=ВС=14 см
в которой ты знаешь три стороны. У него есть угол Д, можно найти из теоремы косинусов. косД=(AD^2+DC^2-AC^2)/2AD*DC=(2AD^2-AC^2)/2AD^2=-AC^2/2AD^2