Площадь полученного шестиугольника будет меньше площади данного шестиугольника на шесть площадей равных равнобедренных треугольников. У этих треугольников боковые стороны равны ½ стороны данного шестиугольника, а угол между ними равен 120⁰.
SΔ= ½ ab · sin γ
S = ½ · ¼a² · (√3)/2 = (кв.ед.)
Из формулы площади шестиугольника S= выражаем сторону а:
Подставляя в формулу площади треугольника, находим, что SΔ = 8/3 кв.ед.
6SΔ = 16 кв.ед.
Площадь полученного шестиугольника равна 64-16=48 (кв.ед.)
В правильной треугольной пирамиде основанием высоты является центр правильного треугольника.. Этот центр - пересечение высот, медиан и биссектрис треугольника. Нам дано, что боковая грань правильной треугольной пирамиды образует с плоскостью основания угол в 60 градусов. Это значит, что апофема SН (высота боковой грани) образует с плоскостью основания угол 60 градусов. В прямоугольном треугольнике ОSH: tg60=SO/OH. Отсюда ОН=SO/tg60 или ОН= 10√3/√3 =10. Этот отрезок можно найти и по Пифагору: SH²-ОН²=SO², отсюда ОН=√(300/3)=10. ОН - это 1/3 от высоты правильного треугольника (основания пирамиды), так как медианы треугольника делится точкой пересечения (центром правильного треугольника) в отношении 2:1, считая от вершины. Значит высота равна 30. Тогда сторона основания "a" найдется из формулы: h=(√3/2)*a: а=2*h/√3 или а=20√3. ответ: сторона основания равна 20√3.
Площадь полученного шестиугольника будет меньше площади данного шестиугольника на шесть площадей равных равнобедренных треугольников. У этих треугольников боковые стороны равны ½ стороны данного шестиугольника, а угол между ними равен 120⁰.
SΔ= ½ ab · sin γ
S = ½ · ¼a² · (√3)/2 =
(кв.ед.)
Из формулы площади шестиугольника S=
выражаем сторону а:
Подставляя в формулу площади треугольника, находим, что SΔ = 8/3 кв.ед.
6SΔ = 16 кв.ед.
Площадь полученного шестиугольника равна 64-16=48 (кв.ед.)