Биссектриса делит катет на отрезки 4см и 5 см, значит весь катет равен 9 см. По свойству биссектрисы она делит сторону треугольника пропорционально соответствующим сторонам. Пусть коэффициет пропорциональности равен х (х>0), тогда катет равен 4х, а гипотенуза 5х. По теореме Пифагора (5х)² = (4х)² + 9² 25 х² = 16х² + 81 9х² = 81 х² = 9 х = 3 Значит второй катет равен 4 * 3 = 12 а гипотенуза 5 * 3 = 15 Радиус описанной окружности равен половине гипотенузы R = 15 : 2 = 7,5см 2) Предположим, что проекция катета равного 4 см на гипотенузу равна х см, тогда по соотношениям в прямоугольном треугольнике 4² = х * (х +6), получим квадратное уравнение х² + 6х - 16 = 0. по теореме обратной к теореме Виета. Получим корни х₁ = 2 и х₂ = -8(второй корень не подходит по условию задачи). Значит гипотенуза равна 2 +6 = 8 см, а высота h² = 2 * 6 = 12 h = √12 = 2√3cм
Правильная четырёхугольная пирамида MABCD AB=BC=CD=AD = 4 см , О - точка пересечения диагоналей OK⊥CM; OK = 2 см
ABCD - квадрат ⇒ AC = BD = AB*√2 = 4√2 см ΔOKC : ∠OKC=90°; OC = AC/2 = 2√2 см; OK = 2 см KC² = OC² - OK² = (2√2)² - 2² = 8-4 = 4 ⇒ KC = 2 см ⇒ ΔOKC - прямоугольный равнобедренный ΔMOC ~ ΔOKC по двум углам: прямому и общему острому ∠OCM ⇒ ΔMOC - прямоугольный равнобедренный ⇒ OM = OC = 2√2 см: MK = KC = 2 см ⇒ MC = 2*2 = 4 см Так как пирамида правильная, то MD = MC = 4 см ⇒ ΔCMD - равносторонний : MD = MC = 4 см = CD ⇒ Угол при вершине пирамиды равен 180°/3 = 60° В равностороннем треугольнике медиана DK - она же высота ⇒ DK⊥MC. Аналогично BK⊥MC ⇒ Угол между смежными боковыми гранями равен углу BKD DK = DC*sin 60° = 4 * √3/2 = 2√3 см ΔBKD : BD = 4√2 см; DK = BK = 2√3 см Теорема косинусов BD² = BK² + DK² - 2BK*DK*cos ∠BKD (4√2)² = (2√3)² + (2√3)² - 2 * 2√3 * 2√3 * cos∠BKD 32 = 24 - 24*cos∠BKD 24cos∠BKD = -8 cos∠BKD = -1/3 ∠BKD = arccos (-1/3) ≈ 109,5°
ΔFMO: ∠FOM=90°; OM = 2√2 см; MF = 2√3 см sin∠MFO = OM / MF = 2√2 / (2√3)= ∠MFO = arcsin () ≈ 54,7° MF⊥AD и OF⊥AD ⇒ ∠MFO - угол между боковой гранью и гранью основания
ответ: угол при вершине 60°; угол между смежными боковыми гранями arccos (-1/3) ≈ 109,5°; угол между боковой гранью и гранью основания равен arcsin () ≈ 54,7°
25 х² = 16х² + 81
9х² = 81
х² = 9
х = 3
Значит второй катет равен 4 * 3 = 12
а гипотенуза 5 * 3 = 15
Радиус описанной окружности равен половине гипотенузы
R = 15 : 2 = 7,5см
2) Предположим, что проекция катета равного 4 см на гипотенузу равна х см, тогда по соотношениям в прямоугольном треугольнике
4² = х * (х +6), получим квадратное уравнение
х² + 6х - 16 = 0. по теореме обратной к теореме Виета. Получим корни
х₁ = 2 и х₂ = -8(второй корень не подходит по условию задачи).
Значит гипотенуза равна 2 +6 = 8 см, а высота h² = 2 * 6 = 12
h = √12 = 2√3cм