Площади оснований правильной четырехугольной пирамиды - если площади ДВЕ,значит пирамида усеченная.
S1 = 4 см2 -квадрат со стороной x=√S1 =√4 = 2 см -диагональю a=x√2=2√2 см
S2=64 см2 -квадрат со стороной y=√S2 =√64 = 8 см-диагональю b=y√2=8√2 см
Тогда площадь диагонального сечения пирамиды - это равнобедренная трапеция с острым углом 45° , верхнее основание a = 2√2см ; нижнее основание b = 8√2 см ;
высота трапеции h = (b-a)/2 *tg45 = (8√2-2√2)/2*1=3√2 см
площадь диагонального сечения S = (a+b) /2 *h= (8√2+2√2)/2*3√2=30 см2
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
Площади оснований правильной четырехугольной пирамиды - если площади ДВЕ,значит пирамида усеченная.
S1 = 4 см2 -квадрат со стороной x=√S1 =√4 = 2 см -диагональю a=x√2=2√2 см
S2=64 см2 -квадрат со стороной y=√S2 =√64 = 8 см-диагональю b=y√2=8√2 см
Тогда площадь диагонального сечения пирамиды - это равнобедренная трапеция с острым углом 45° , верхнее основание a = 2√2см ; нижнее основание b = 8√2 см ;
высота трапеции h = (b-a)/2 *tg45 = (8√2-2√2)/2*1=3√2 см
площадь диагонального сечения S = (a+b) /2 *h= (8√2+2√2)/2*3√2=30 см2
ОТВЕТ 30 см2