1. 4) такого тр-ка не существует, потому-что 5+9<15, а с таким отношением тр-ник построить нельзя. 2. Пусть боковые стороны будут a=х и b=х-3. Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние: х²-10²=(х-3)²-5², х²-100=х²-6х+9-25, х=14, а=14 см, b=14-3=11 см, c=5+10=15 cм. Р=14+11+15=40 см. ответ: б) 40 см. 3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3. АВ=4√3/√3=4 см. Периметр ромба: Р=4АВ=16 см. ответ: а) 16 см.
А и b - основания, a>b, h и с - боковые стороны, h<c, R=9, S=432. b=?
Высота трапеции равна диаметру окружности. h=2R=18. Площадь трапеции S=h(a+b)/2 ⇒ (a+b)=2S/h=2·432/18=48. B описанной трапеции h+с=a+b ⇒ с=a+b-c=48-18=30. Опустим высоту на большее основание из тупого угла трапеции. Она разбивает это основание на два отрезка, один из которых равен меньшему основанию, а другой (х) образует прямоугольный треугольник вместе с наклонной боковой стороной и высотой. х²=с²-h²=30²-18²=576, x=24. a=b+x=b+24.
Икосаэдр — правильный выпуклый многогранник, двадцатигранник.
Каждая из 20 граней представляет собой равносторонний треугольник.
S = 20*(a²√3/4) = 5a²√3 = 5*2²√3 = 20√3 см².