М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bagaeva02
bagaeva02
08.02.2023 16:10 •  Геометрия

Диагональ прямоугольника равна 18 см и составляет с одной из его сторон угол равный 60 градусов найдите площадь прямоугольника.
!
!

👇
Ответ:
kitsunesan13
kitsunesan13
08.02.2023

ABCD - прямоугольник, АС - диагональ. Пусть ∠BCA = 60°.

∠BAC = 90° - 60° = 30°; BC = 0.5AC = 9 см (против угла 30° катет в два раза меньше гипотенузы). По т. Пифагора AB² = 18² - 9² = 9√3 см

S = 9√3 · 9 = 81√3 см²


Диагональ прямоугольника равна 18 см и составляет с одной из его сторон угол равный 60 градусов найд
4,4(89 оценок)
Открыть все ответы
Ответ:
1) И прямая, и плоскость не имеют строгих определений в геометрии, а определяются через их свойства. У прямой нет "ширины" и "высоты", однако она простирается бесконечно в обе стороны. В строгом смысле слова, прямая - это одномерный аналог пространства. Плоскость имеет уже два бесконечных измерения - "длину" и "ширину", это двумерный аналог пространства.

2)
а) нет, не могут. Плоскости либо параллельны (и тогда они не имеют общих точек), либо пересекаются по прямой (и тогда имеют бесконечное множество общих точек), либо совпадают (и тоже имеют бесконечное множество общих точек)
б) нет
в) да
4,7(41 оценок)
Ответ:
LeraCat2288
LeraCat2288
08.02.2023

1. Вспомним признак прямоугольника: если в четырёхугольнике три угла равны по 90°, то этот четырёхугольник - прямоугольник. Рассмотрим и проверим этот признак в данной задаче:

\begin{cases}\overrightarrow{AB}=24-16=\underline{8},\\\overrightarrow{AB}=15-3=\underline{12}\end{cases} \Rightarrow \boldsymbol{\Big(8; \: 12\Big)}

\begin{cases}\overrightarrow{BC}=18-24=\underline{-6},\\\overrightarrow{BC}=19-15=\underline{4}\end{cases} \Rightarrow \boldsymbol{\Big(-6; \: 4\Big)}

\begin{cases}\overrightarrow{AD}=10-16=\underline{-6},\\\overrightarrow{AD}=7-3=\underline{4}\end{cases} \Rightarrow \boldsymbol{\Big(-6; \: 4\Big)}

\begin{cases}\overrightarrow{CD}=10-18=\underline{-8},\\\overrightarrow{CD}=7-19=\underline{-12}\end{cases} \Rightarrow \boldsymbol{\Big(-8; \: -12\Big)}

Вспомним свойство о скалярном произведении векторов: если произведение двух ненулевых векторов равно нулю, то эти векторы перпендикулярны. Найдём такие пары векторов:

\overrightarrow{AB}\cdot\overrightarrow{BC}=\Big(8\cdot (-6)\Big)+\Big(12\cdot4\Big)=-48+48=0-\checkmark

\overrightarrow{CD}\cdot\overrightarrow{AD}=\Big(-8\cdot (-6)\Big)+\Big(-12\cdot4\Big)=48-48=0-\checkmark

\overrightarrow{BC}\cdot\overrightarrow{CD}=\Big(-6\cdot (-8)\Big)+\Big(4\cdot(-12)\Big)=48-48=0-\checkmark

Теперь мы можем утверждать, что фигура "ABCD" - прямоугольник, т.к. углы "B", "C" и "D" составляют по 90° каждый.

Что и требовалось доказать.

2. Площадь прямоугольника - произведение его длины и ширины. Поэтому сначала нужно найти, чему равна длина и ширина.

| \overrightarrow{AB} |=\sqrt{8^2+12^2}=\sqrt{64+144}=\sqrt{208}=\underline{4\sqrt{13}} \\ \\ | \overrightarrow{BC} |=\sqrt{(-6)^2+4^2}=\sqrt{36+16}=\sqrt{52}=\underline{2\sqrt{13}}

Теперь, когда нам известна и длина, и ширина, найдём площадь прямоугольника:

S_{ABCD}=4\sqrt{13} \cdot 2\sqrt{13}=4 \cdot 2 \cdot 13=\boldsymbol{104} см².

ответ: 104 см².


Докажи, что четырёхугольник ABCD является прямоугольником, найди его площадь, если A(16;3), B(24;15)
4,6(64 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ