Объяснение: В ΔМNK из точки М проведите дугу окружности так, чтобы пересечь прямую NK в двух точках Р и Q. Затем поочереди из двух точек Р и Q проведите дуги одинакового радиуса на полу- плоскости относительно прямой NK, где нет точки М. Назовём точку пересечения этих дуг точкой А. Соединим М и А, получим МН ⊥ NK.
Описание: 1) окр (М; r) ∩ MK, получим Р и Q.
2) окр (Р; R) ∩ окр (К; R) = А.
3) МА ∩ NK = Н, МН- искомая высота Δ МNК.
В ΔСДР проведём поочерёдно две дуги одинаковым радиусом больше половины отрезка ДР навстречу друг другу из точек Д и Р. Эти дуги пересекутся в двух точках М и N. Соединим отрезком точки М и N.
Точку пересечения МN и ДР обозначим точкой К. Проведём отрезок СК, который и будет медианой ΔСДР.
Описание: 1)окр (Д; R) ∩ окр(Р; R), получим М и N.
2) MN ∩ ДР = К, СК- искомая медиана ΔСДР.
P.S. Если непонятно обозначение окружности в описании, то:
окр ( Р; R) - обозначение окружности с центром в Р и радиусом R.
72°; 54°; 54°.
Объяснение:
Дано:
Равнобедренный треугольник МРК.
АВ ║МР, точка А ∈ МК, точка В ∈ КР.
∠К = 72°, ∠ М = 54°
Найти: углы треугольника АВК.
Решение.
1. Так как Δ МРК является равнобедренным, то его углы при основании равны:
∠Р = ∠М = 54°.
2. Так как АВ ║ МР, то Δ ABK подобен Δ МРК, в силу чего:
∠АКВ треугольника АВК равен ∠К треугольника МРК:
∠АКВ = ∠К = 72°;
∠КАВ треугольника АВК равен ∠М треугольника МРК:
∠КАВ = ∠М = 54°;
∠КВА треугольника АВК равен ∠Р треугольника МРК:
∠КВА = ∠Р = 54°.
ответ: углы треугольника АВК равны 72° (угол при вершине), 54° и 54° (углы при основании).
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
Объяснение:
медиана-отрезок идущий из угла к точке, делящую противолежащую сторону пополам
высота-отрезок идущий из угла к противолежащей стороне под прямым углом(90°)
делим отрезок DR пополам и проводим отрезок из точки С в точку(М)на стороне DR, делящую его пополам
проводим отрезок из точки М в точку(Н) на стороне NK так, чтобы МН был перпендикулярен NK.