пусть точка пересечения медиан - т.m, медианы в точке пересечения делятся в отношении 2: 1 начиная от вершины => am = 12см, cm = 10см, также известно, что в равнобедренном треугольнике больший угол между медианами равен 120 градусам. рассмотрим треугольник amc. am =12, cm =10.
<A+<KMC=180 Сумма углов в четырехугольнике равна 360,следовательно <C+<AKM=180 Если суммы противоположных углов равны,то вокруг четырехугольника можно описать окружность. <AKC=<AMC-опираются на одну дугу АС <KCM=<KAM-опираются на одну дугу KM <AOK=<COM-вертикальные,значит дуга АК равна дуге МС Следовательно <MAC=<KCA Значит <A=<C и <K=<M Отсюда ABCD равнобедренная трапеция,основания параллельны. ΔВАС тоже равнобедренный и АВ=АС Следовательно <BKM=<BAC,<BMK=<BCA-соответственные Тогда ΔBCA∞ΔKBM Отсюда KM/AC=BK/BC
пусть точка пересечения медиан - т.m, медианы в точке пересечения делятся в отношении 2: 1 начиная от вершины => am = 12см, cm = 10см, также известно, что в равнобедренном треугольнике больший угол между медианами равен 120 градусам. рассмотрим треугольник amc. am =12, cm =10.
ac^2 = am^2 + cm^2 - 2amcmcos120
ac^2 = 144 + 100 + 240 = 484 см
ac = 22 см
Объяснение: