Сделаем рисунок и обозначим вершины трапеции АВСD.
Пусть основаниями будут ВС и АD.
По условию задачи ∠А+∠С=90º
Т.к. в треугольнике АВD ∠АВD+∠ВАD=90º, то ∠АВD= ∠ВСD
Если в прямоугольных треугольниках равны один из острых углов, то такие треугольники подобны.
Меньшая диагональ ВD является высотой трапеции - она перпендикулярна основаниям по условию.
Из подобия ᐃ АВD и ᐃ ВСD
АD:ВD=ВD:ВС
18:ВD=ВD:2
ВD²=36
ВD=6
Площадь трапеции равна половине произведения её высоты на сумму оснований.
S=6(2+18):2=60 ( квадратных единиц измерения)
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.