Объяснение:
1. сумма смежных углов равна 180 ,один угол равен Х,второй = Х+20, составляем уравнение : Х+Х+20=180, 2Х=160,Х=80 - первый угол,второй угол = 80+20=100
2.при пересечении двух прямых накрест лежащие углы равны друг другу,т.к. один угол равен 102,тогда накрест лежащий ему угол так же равен 102 .смежные с ними углы соответственно так же равны по тому же признаку,чтобы их найти надо отнять от 180 первый угол :180-102= 78 . ответ 102,102,78,78
3. угол два равен углу бетта,тк они накрест лежащие, чтобы найти 1 угол надо от 180 отнять угол Альфа и 2 угол : 180 - 130-20= 30 .
угол 3 равен 180 -второй угол и угол Альфа: 180-130-20 = 30
чтобы найти 4 угол надо от 180 отнять третий угол и второй угол : 180 -30-130= 20
1) Сумма углов треугольника 180°. В ∆ АВС угол В=180°-50°-60°=70°. В ∆ А1В1С1 угол А1=180°-708-608=50°. Треугольники АВС и А1В1С1 подобны по равенству всех углов.
2) По условию АС║BD, АВ и СD - секущие. Образовавшиеся при пересечении секущими параллельных прямых накрестлежащие углы равны. ⇒ ∠СAО=∠DBO=61°. Треугольники АОС и BOD подобны по равенству накрестлежащих углов, а стороны, содержащие вертикальные углы при О - пропорциональны. k=АО:ВО=12:4=3, k=СО:DO=30:10=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. S(AOC):S(BOD)=k²=3²=9