Решение: Уравнение прямой проходящей через три точки
|x-x1 y-y1 z-z1|
|x2-x1 y2-y1 z2-z1| =0
|x3-x1 y3-y1 z3-z1|
(вертикальные скобки означают определитель)
|x-4 y-1 z-3| |x-4 y-1 z-3 | |0 y-1 z+х-7 |
|5-4 1-1 2-3|= |1 0 -1|= |1 0 -1 |=
|1-4 3-1 2-3| |-3 2 -1| |0 2 -4 |
=(-1)*((y-1)*(-4)-2*(z+x-7))=(-1)*(-4y+4-2z+14-2x)=2x+4y+2z-18=0
(подставили данные значения, потом провели вычисления, потом сложили первую строчку с второй, умноженной на (4-х), третью с второй умноженной на 3, и разложили определитель по второй строке)
Разделив на 2 обе части уравнения (-2), окончательно получим:
х+2y+z-9=0
ответ: x-2y-z+2=0
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
Это минимаксная задача, нужно использовать приложение производной: