Диагонали равнобедренной трапеции точкой пересечения делятся в отношении 2: 5. вычисли периметр трапеции, меньшее основание которой равно высоте и составляет 8,8 см.
В трапеции ABCD диагонали пересекаются в точке F и делятся в отношении 2:5. Рассмотрим два треугольника:
ΔBCF и ΔAFD/ Они - подобны. Угол BCF= углу AFD как вертикальные, Диагонали равны в равнобедренной трапеции и делятся на пропорциональные отрезки. Проведем через точку F высоту трапеции, обозначим точку пересечения с верхним основанием -N, с нижним основанием -L. Запишем пропорцию для этих подобных треугольников:
BC:NF=AD:FL или BC:AD=NF:AD, из условия NF:AD=2:5
8,8:AD=2:5, AD=8,8·5/2=22cm.
Чтобы вычислить боковую сторону из вершины B опустим высоту и точку пересечения с основанием AD обозначим
через K. Вычислим отрезок AK .
AK=(AD-BC):2=(22-8,8):2=13,2:2=6,6cm
Из треугольника ABK по теореме Пифагора вычислим AB.
AB²=AK²+BK²=6,6²+8,8²=43,56+77,44=121
AB=11 cm.
Вычислим периметр трапеции: AB+BC+CD+AD= =11+8,8+11+22=52,8 cm
ответ: P=52,8 cm
ꟷꟷꟷꟷꟷꟷ
Не забывайте сказать " "! и, если ответ удовлетворил, то выберите его как "Лучший"
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
P=52,8 cm
Пошаговое объяснение:
В трапеции ABCD диагонали пересекаются в точке F и делятся в отношении 2:5. Рассмотрим два треугольника:
ΔBCF и ΔAFD/ Они - подобны. Угол BCF= углу AFD как вертикальные, Диагонали равны в равнобедренной трапеции и делятся на пропорциональные отрезки. Проведем через точку F высоту трапеции, обозначим точку пересечения с верхним основанием -N, с нижним основанием -L. Запишем пропорцию для этих подобных треугольников:
BC:NF=AD:FL или BC:AD=NF:AD, из условия NF:AD=2:5
8,8:AD=2:5, AD=8,8·5/2=22cm.
Чтобы вычислить боковую сторону из вершины B опустим высоту и точку пересечения с основанием AD обозначим
через K. Вычислим отрезок AK .
AK=(AD-BC):2=(22-8,8):2=13,2:2=6,6cm
Из треугольника ABK по теореме Пифагора вычислим AB.
AB²=AK²+BK²=6,6²+8,8²=43,56+77,44=121
AB=11 cm.
Вычислим периметр трапеции: AB+BC+CD+AD= =11+8,8+11+22=52,8 cm
ответ: P=52,8 cm
ꟷꟷꟷꟷꟷꟷ
Не забывайте сказать " "! и, если ответ удовлетворил, то выберите его как "Лучший"
Бодрого настроения и добра!
Успехов в учебе!