ответ: КС=16см
Объяснение: пусть катет ВС=х, тогда гипотенуза АС=2х. Зная, что АВ=24, составим уравнение используя теорему Пифагора:
(2х)²-х²=24²
4х²-х²=576
3х²=576
х²=192
х=√64×3
х=8√3см; ВС=8√3; АС=8√3×2=16√3см
Так как ВС равна ½АС, то этот катет лежит напротив угла 30°, значит угол А= 30°, следовательно, угол С=60°. Зная, что биссектриса, проведённая из угла С делит его пополам, то угол ВСК=углу АСК=30°. Теперь рассмотрим полученный ∆ВСК.Он также прямоугольный, где ВС и ВК катеты, а СК- гипотенуза. мы нашли катет ВС, угол ВСК=30°, а значит, катет лежащий напротив него тоже будет равен половине гипотенузы в этом треугольнике, т.е. ВК=½СК. Точно так же пусть ВК=х, тогда КС=2х. Составим уравнение используя теорему Пифагора: КС²-ВК²=ВС²
(2х)²-х²=(8√3)²
4х²-х²=64×3
3х²=192
х²=192÷3
х²=64
х=√64
х=8; итак: ВК=8см, тогда КС=8×2=16см
КС=16см
Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².