Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Ну, в треуг. к бОльшей стороне проводится мЕньшая высота. Док-во очень простое, логическое. Площадь треуг.- величина постоянная? Да. Тогда если брать произведение бОльшей стороны на какую-то высоту (1) и мЕньшую сторону на какую-то высоту (2), то понятно, что (1) должна быть меньше (2) Соответственно 10 - 9 15 - 6 18 - 5 Проверяя по площади, находим, что это так.
Но вот только неувязочка с задачей- высоты -то фейковые! Из решения получаем, что площадь треуг. будет, например , 10*9/2=45
А из сторон 15,18 и 10 по формуле Герона находим истинную площадь - приблизительно 75. Тем, кто составлял условие задачи - руки повыдергивать. Так учителю и скажи.