Четырехугольник четырехугольник авсd симметричен относительно биссектрисы угла а. какие из утверждений заведомо верны?
1)в четырехугольнике есть пара равных сторон
2)в четырехуголтнике равны диагонали
3)через вершину с можно провести ось симметрии четырехугольника
4)через вершину в можно провести ось симметрии четырёхугольника
5)какие-то две стороны четырехугольника параллельны
6)точка пересечения диагоналей четырехугольника является серединой хотя бы одной из них
7)диагонали четырёхугольника перпендикулярны
8)диагонали четырехугольника образуют одинаковые углы с одной из сторон
! желательно с объяснением,но можно и без.
ΔАСВ - равнобедренный, АС = ВС (по условию); ∠С = 90°; СН - высота.
Найти СН
Решение:
Если прямоугольный треугольник является равнобедренным, то оба его катета равны (АС = ВС) А высота СН, проведённая из прямого угла, является и медианой и биссектрисой,
⇒ СН разделит АВ пополам, т. е. АН = НВ = 5см - (свойство медианы)
⇒ ∠АСН = ∠НСВ = 45° - (свойство биссектрисы)
Рассмотрим Δ АНС: ∠АНС = 90° (т.к. НС - высота);
∠АСН = 45°
∠НАС = 180 - 90 - 45 = 45° (сумма ∠∠∠ Δ=180°)
⇒ Δ АНС - равнобедренный (∠АСН = ∠НАС = 45°)
⇒ НС = НА = 5 см
ответ: НС = 5см