Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
4,7(96 оценок)
Ответ:
27.06.2021
2.так как. АД-медина, то т. Д (х; у) -середина ВС Значит, х=(х1+х2)/2 у=(у1+у2)/2 В (х1;у1), С (х2;у2), Д (-2;-4) Соs(АД АС) =(вектор АД*на вектор АС) /|АД|*|АС| (дальше это векторы) АД (-2-0;-4-(-4)) АД (-2;0) АС (-1-0;-3-(-4)) АС (-1;1) АД*АС=-2*(-1)+0*1=2 |АД|=2;|АС|=корень из 2 Соs(АД АС) =2/(2*корень из 2)=корень из 2/2 Значит, угол равен 45 градусов. 1.Поместите A в начало координат, D на оси x, B - на оси y. Все координаты находятся элементарно. Дальше - находите вектора и перемножаете. Например, координаты точки B - (0,6)
1 и 2 треугольник подобны
Можно доказать, через углы.
Т. Е. накрест лежащие, смежные