Задача 2 окружность разделена на 2 дуги -одна содаржит 4 части ,другая -5 частей ,следовательно обе дуги ,составляют 9 частей и360 градусов .Поэтому одна часть равна 360 :9= 40 градусов следовательно меньшая дуга равна 40х4= 160 градусов 2) Точки А и С -точки касания окружности с углом АВС из центра окружности проведем радиусы в точки касания они перпендикулярны сторонам угла АВС .3)угол АОС -центральный ,он измеряется дугой на которую опирается .уголАОС=160 градусов .4)соединим точки ОиВ прямой ОВ .эта прямая делитугол АВС пополам,уголВОС=80 ,УГОЛосв=90 ПОЭТОМУ УГОЛовс 10 градусов но ВО -биссектриса угла АВС следовательно АВС-20градусам (читай теорию про окружность)
Все окружности, для которых отрезок BC является хордой и равен радиусу, построить НЕВОЗМОЖНО, так как таких окружностей бесконечно много. Если в окружности хорда равна радиусу, то значит треугольник, образованный этой хордой и двумя радиусами, проведеннысм к концам хорды, образуют правильный трецгольник. Строим правильный треугольник со стороной, равной АВ. Для этого на прямой "а" откладываем циркулем отрезок, равный данному и из концов А и В отрезка радиусами, равными АВ, делаем "засечки" по обе стороны от прямой "а". Соединив "засечки" с точками А и В отрезками, получаем два равносторонних треугольника со сторонами, равными АВ. Проведя окружности радиусами АВ с центрами в вершинах получившихся треугольников, имеем окружности, которые надо было построить. Далее можно продолжать до бесконечности, строя окружности с центрами в точках пересечения полученных окружностей. У всех этих окружностей хорды и радиусы будут равны отрезку АВ.