Надо вычислить расстояния между точками, и проверить, возможно ли построение треугольника (сумма любых двух расстояний больше третьего). AB = √((1-2)²+(1-3)²+(1-4)²) = √(1+4+9)=√14 ≈ 3,742 AC = √((1-4)²+(1-3)²+(1-2)²) = √(9+4+1)=√14 BC = √((2-4)²+(3-3)²+(4-2)²) = √(4+0+4)=√8 ≈ 2,828 Треугольник построить можно √14 + √14 > √8 √14 + √8 > √14
Медиана BM Точка M - среднее арифметическое точек А и С М = 1/2 ((1,1,1)+(4,3,2)) = 1/2(5;4;3) = (5/2;2;3/2) |ВМ| = √((2-5/2)²+(3-2)²+(4-3/2)²) = √(1/4+1+25/4)=√((1+4+25)/4) = √30/2
угол при вершине В можно найти по теореме косинусов √14² = √14²+√8²-2√14√8·cos(B) 2√14√8·cos(B) = 8 2√14·cos(B) = √8 √7·cos(B) = 1 cos(B) = 1/√7 B = arccos (1/√7)
Решается очень просто, просто нужно немножко подумать.Постараюсь объяснить! из точки В к основанию АД опускаешь высоту, получается высота ВК. из точки С опускаешь высоту к основанию АД, получается высота СМ. ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14 АК=МД=14/2=7 В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы. В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30 Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14
AB = √((1-2)²+(1-3)²+(1-4)²) = √(1+4+9)=√14 ≈ 3,742
AC = √((1-4)²+(1-3)²+(1-2)²) = √(9+4+1)=√14
BC = √((2-4)²+(3-3)²+(4-2)²) = √(4+0+4)=√8 ≈ 2,828
Треугольник построить можно
√14 + √14 > √8
√14 + √8 > √14
Медиана BM
Точка M - среднее арифметическое точек А и С
М = 1/2 ((1,1,1)+(4,3,2)) = 1/2(5;4;3) = (5/2;2;3/2)
|ВМ| = √((2-5/2)²+(3-2)²+(4-3/2)²) = √(1/4+1+25/4)=√((1+4+25)/4) = √30/2
угол при вершине В можно найти по теореме косинусов
√14² = √14²+√8²-2√14√8·cos(B)
2√14√8·cos(B) = 8
2√14·cos(B) = √8
√7·cos(B) = 1
cos(B) = 1/√7
B = arccos (1/√7)