Рассмотрим треугольник АСД и наклонную ВК. К∈АС. По теореме Менелая (АК/КС)·(СО/ОД)·(ВД/АВ)=1.
Высота равнобедренного треугольника, проведённая к основанию, является медианой, значит АД=ВД ⇒ ВД:АВ=1:2.
(АК/КС)·(1/1)·(1/2)=1, АК/КС=2:1.
Треугольники АОД и ВОД равны по двум сторонам и прямому углу между ними, значит ∠ОАД=∠ОВД. Треугольники ALB и ВКА равны по общей стороне АВ и прилежащим к ней углам, значит АК=BL, значит СК=CL, значит треугольник CKL равнобедренный, значит треугольники АВС и CKL подобны.
Коэффициент подобия тр-ков АВС и CKL: k=AC/КС. АК:КС=2:1 ⇒ АС:КС=3:1=k. Коэффициент подобия площадей тр-ков АВС и CKL k²=3²=9.
Рассмотрим треугольник АСД и наклонную ВК. К∈АС. По теореме Менелая (АК/КС)·(СО/ОД)·(ВД/АВ)=1.
Высота равнобедренного треугольника, проведённая к основанию, является медианой, значит АД=ВД ⇒ ВД:АВ=1:2.
(АК/КС)·(1/1)·(1/2)=1, АК/КС=2:1.
Треугольники АОД и ВОД равны по двум сторонам и прямому углу между ними, значит ∠ОАД=∠ОВД. Треугольники ALB и ВКА равны по общей стороне АВ и прилежащим к ней углам, значит АК=BL, значит СК=CL, значит треугольник CKL равнобедренный, значит треугольники АВС и CKL подобны.
Коэффициент подобия тр-ков АВС и CKL: k=AC/КС. АК:КС=2:1 ⇒ АС:КС=3:1=k. Коэффициент подобия площадей тр-ков АВС и CKL k²=3²=9.
Объяснение:
ЗАДАЧА 5
1)Т.к АВС-равнобедренный, то ВД-не только бисектриса, но и высота , поэтому ∠ВДК=90, ∠АВД=126:2=63
2) АВ║КМ, ВД-секущая значит соответственные углы равны ∠АВД=∠КМД=63
3) АВ║КМ, АД-секущая значит соответственные углы равны ∠ВАС=∠МКС=27
ЗАДАЧА 6
1)КВ-биссектриса, значит ∠2=∠3
2) ΔКВА-равнобедренный , значит ∠1=∠3.
3)Т.К.∠2=∠3 и ∠1=∠3., значит ∠1=∠2. И эти же углы накрест лежащие при прямых АВ, КN и секущей ВК. Поэтому АВ║ КN по признаку накрест лежащих углов