1.
AC = 8,5 - 4,6 = 3,9 см.
AB - весь отрезок.
AC - часть отрезка.
BC - часть отрезка.
2.
угол CBD = углу ABC = 25°
угол ABD = CBD + ABC = 25° + 25° = 50°
3.
второй угол = 180° - первый угол = 180° - 114° = 66°
4.
P треугольника = 6 + 6 + 4 = 16 см.
5.
1) Рассмотрим треугольник АВС
По теореме о сумме углов треугольника найдем угол В.
Угол В = 180° - угол А - угол С = 180° - 80° - 40° = 60°
2) Угол ВМK = углу А (соответственные при МК || АС и секущей АВ)
Угол ВМK = 80°
3) Угол ВМN = углу MKN (т.к. MN - биссектриса угла ВМК)
Угол ВМN = углу MKN = 80° : 2 = 40°
4) Рассмотрим треугольник ВМN
По теореме о сумме углов треугольника найдем угол МNВ.
Угол MNB = 180° - угол В - угол ВМN = 180° - 60° - 40° = 80°
5) Сумма углов MNB и MNK равна 180°, т.к. они смешные.
Отсюда угол MNK = 180° - угол MNB = 180° - 80° = 100°
ответ: угол MNK = 100°
6.
Угол ДАС = углу ЕСА ( углы при основании ровнобедреного тркугольника АВС )
Угол ЕАС = углу ДСА ( Угол ДАС = углу ЕСА, а АЕ и СД - биссектрисы этих углов )
АС - общая сторона - из всего выше изложеного делаем вывод что треугольник АДС = треугольнику СЕА ( по стороне и двум прилегающим к ней углам )
7.
Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.
Пусть угол С=2х°, угол КАВ=5х°, угол В=90°, тогда 2х+90=5х
3х=90; х=30
угол С=30:2=60°; угол А=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°
Катет ВС лежит против угла 30°, следовательно, он равен половине гипотенузы АС
АС=2ВС=12 см.
1) Знаем, что объём конуса равен трети произведения высоты на площадь основания.
V конуса = 1/3 * H * S основ. = Н/3 * Пи * R^2, где
Н - высота конуса, R - радиус окружности основания.
2) Знаем соотношение высоты Н и радиуса R: Н/R = 3/2, откуда
3) Н=3*R/2;
4) подставим 3) в 1) V=(3*R/2)/3 * Пи * R^2 =(R/2) * Пи * R^2 = Пи*R^3/2; V=Пи*R^3/2;
5) Знаем, что объём V=48*Пи. Подставим значение 4) в 5) :
48*Пи=Пи*R^3/2; Сократим на Пи/2: 48*2=R^3; Откуда R=куб. √96=2*куб. √12;
6) Подставим значение 5) в 3) :
Н=3*R/2=3*(2*куб. √12)/2=3*куб. √12;
7) По теореме Пифагора найдём величину образующей конуса (Обр.) :
Oбр. = √(Н^2+R^2) = √((3*куб. √12)^2+(2*куб. √12)^2)=√(13*(куб. √12)^2)=(куб. √12)*√13;
8) Найдём длину окружности основания (Дл. Окр.) ;
Дл. Окр. =2*Пи*R; Дл. Окр. =2*Пи*(2*куб. √12)=4*Пи*куб. √12;
9) Найдём площадь основания Sосн. =Пи*R^2=Пи*(2*куб. √12)^2=4*Пи*(куб. √12)^2;
10) Найдём площадь боковой поверхности: Sбок. =0,5*Обр. *Дл. Окр. =
Sбок. =0,5*(куб. √12)*√13*4*Пи*кубю√12=2*Пи*√13*(куб. √12)^2;
11) Найдём площадь полной поверхности конуса: Sполн. =Sосн. +Sбок. ;
Sполн. =4*Пи*(куб. √12)^2+2*Пи*√13*(куб. √12)^2=2*Пи*(2+√13)*(куб. √12)^2=
=2*3,14*(2+3,61)*5,241=184,6;
Где-то так…
Желаю здравствовать!
Объяснение:
Відповідь:
Пояснення: фото