ответ: обратная теорема - теорема, в которой условием является заключение, а заключением – условие данной теоремы. например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу.
обратная теорема, теорема, условием которой служит заключение исходной теоремы, а заключением — условие.
например:
теорема:
у равнобедренного треугольника углы при основании равны
обратная:
если в треугольнике углы при основании равны, то этот треугольник равнобедренный
теорема:
в треугольнике против большей стороны лежит больший угол
обратная:
в треугольнике против большего угла лежит большая сторона
теорема:
прямоугольник - параллелограмм, у которого равны диагонали.
обратная:
параллелограмм с равными диагоналями является прямоугольником.
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см