Если трапеция описана около окружности, то суммы ее противоположных сторон равны. Сумма боковых сторон = 9a+16a+9a+16=50a, значит сумма оснований также = 50a. Радиус вписанной в трапецию окружности = 1/2 h = 12 см. Радиус можно найти по формуле r=S/p, где S - площадь, p - полупериметр. Найдем p, зная суммы противоположных сторон: p=50a+50a/2=50a S = a+b/2 * h, где а и b - основания; Сумма оснований = 50а, значит полусумма = 25а, следовательно S = 25a*24 Вернемся к формуле: 25a*24/50a=12 600a=600, значит а=1 Средняя линия - это полусумма оснований, значит, она равна = 25а=25 (см) ответ: 25 см.
1.Пусть х - ∠ 1, тогда 2х - ∠2 угол.
Сумма острых углов прямоугольного треугольника равна 90°
х + 2х = 90
3х = 90
х = 30°
30° - ∠1
∠2 = 30 × 2 = 60°
ответ: 60°; 30°.
2. Прямоугольный треугольник - треугольник, у которого один угол прямой (то есть равен 90°.
Осталось найти ещё два острых.
Пусть х - ∠1, тогда х - 18 - ∠2
Сумма острых углов прямоугольного треугольника равна 90°
х + (х - 18) = 90
2х = 108
х = 54
54° - ∠1
54 - 18 = 36° - ∠2
ответ: 36°; 54°; 90°
3.Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> Гипотенуза = 6 × 2 = 12 см
ответ: 12 см
4. Сумма острых углов прямоугольного треугольника равна 90°
А так как треугольник равнобедренный => ∠1 = ∠2 = 90 ÷ 2 = 45°
Один угол прямой в прямоугольном треугольнике => ∠3 = 90°
ответ: 45°; 45°; 90°.
5. Сумма острых углов прямоугольного треугольника равна 90°
=> ∠А = 90 - 60 = 30°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> АВ = 6 × 2 = 12 см
ответ: 12 см
6. Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°
=> ∠А = 30°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
ответ: 60°.