Можно взять угол С тупой, тогда срабатывает теорема косинусов, при условии выполнения неравенства треугольников такой треугольник будет существовать.
ответ Существует.
б) Отношение а к с равно отношению косинуса А к косинусу С. Возьмем, например, угол А и угол С по 45°, а угол В прямой. Тогда при выполнении неравенства треугольников такой треугольник прямоугольный равнобедренный существует.
По свойству отрезков касательных к окружности ,проходящих через одну точку,имеем,что углы,которые они образуют с прямой,проходящей через эту точку и центр окружности равны. Соединим центр окружности с вершинами тупого и острого углов. Получаем прямоугольный треугольник с прямым углом в центре окружности,поскольку сумма углов,прилежащих к боковой стороне,равна 180(острые углы треугольники - углы при биссектрисах острого и тупого углов трапеции). h треуг=r.(через Т.Пифагора доказывается среднее геом.проекций катетов на гип.) r=V(25*4)=10. В трапеции 2r=h,а в прямоуг.трап. ещё и h=меньшая боковая Следовательно,боковая 2*10=20. Значит,суммы противоположных 29+20=49. Окружность касается боковой стороны в серединах, значит,части 10 и 10. По св-ву отрезков касательных,получаем,меньшая - 14, большая - 35 S=(35+14)\2*20=490 ответ:490
а) Возьмем угол С прямой. Получим теорему Пифагора, косинус прямого угла равен нулю. а=3, в=4, с=5.
Можно взять угол С тупой, тогда срабатывает теорема косинусов, при условии выполнения неравенства треугольников такой треугольник будет существовать.
ответ Существует.
б) Отношение а к с равно отношению косинуса А к косинусу С. Возьмем, например, угол А и угол С по 45°, а угол В прямой. Тогда при выполнении неравенства треугольников такой треугольник прямоугольный равнобедренный существует.
в) Если угол В прямой, а угол А равен 30°,
сторона с =а√3, в=2а
ответ Существует