М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Arina200444
Arina200444
08.01.2022 19:50 •  Геометрия

Дано: прямые a,b и c пересекают плоскость альфа в точках м,к и р. лежат ли прямые a,b и c в одной плоскости. ,распишите подробно

👇
Ответ:
LugovoyDanila
LugovoyDanila
08.01.2022
Если бы прямые a, b, c лежали в одной плоскости, то эта плоскость пересекала бы плоскость альфа по прямой, и точки m, k, p лежали бы на этой прямой. судя по рисунку, точки m, k, p на одной прямой не лежат. следовательно, прямые a, b, c не лежат в одной плоскости.
4,6(52 оценок)
Ответ:
elenabuda85
elenabuda85
08.01.2022
Не обязательно , так как не написано ничего подробнее про расположение точек и прямых
4,7(72 оценок)
Открыть все ответы
Ответ:
Alina1536
Alina1536
08.01.2022

Объяснение: ЗАДАНИЕ 1

Площадь шара вычисляется по формуле:

S=4πR², где R- радиус шара=13+6+8=27

S=4π×27²=4π×729=2916(ед²)

Объем шара вычисляется по формуле:

V=4/3πR³=4/3π×27³=4/3π×19683

=26244π(ед³)

ЗАДАНИЕ 2

Обозначим радиусы конуса ОН и О1А. Получилась прямоугольная трапеция ОНАО1. Проведём высоту НН1 к радиусу нижнего основания О1А. Она делит О1А так, что О1А=ОН=6, значит Н1А=14-6=8.

Также получился прямоугольный треугольник НАН1, в котором радиусы основания являются катетами а образующая конуса гипотенузой. Найдём НА по теореме Пифагора:

НА²=НН1²+НА²=13²+8²=169+64=233;

НА=√233

Найдём площадь боковой поверхности конуса по формуле:

Sбок=π(R+R1)HA=π(6+14)×√233=20√233π;

√233≈15,3; 20×15,3π=306π

Найдём площадь верхнего и нижнего оснований по формуле: S=πr²

Sверх.осн=π×6²=36π

Sниж.осн=π×14²=196π

Площадь полной поверхности конуса- это сумма всех его площадей основания и боковой поверхности:

Sпол=Sбок.пов+S2хосн=306π+36π+196π==538π

Sпол=538π

Объём усечённого конуса вычисляется по формуле: V=⅓×πH(R1²+R1×R2+R2²)=

=⅓π×13(6²+6×14+14²)=13π/3(36+84+196)=

=13π/3×316=4108π/3(ед³)

или 1369π целых ⅓

ОТВЕТ: Sпол=538π(ед²); V=4108π/3(ед³)


Найти площадь полной поверхности и объём шара, радиус которого равен 13+6+8. 2. Найти площадь полной
4,4(70 оценок)
Ответ:
KamAbi003
KamAbi003
08.01.2022

Задание 1.

(Смотри вложение 1 )

Осевым сечением цилиндра является прямоугольник.

Формула площади прямоугольника: S = a*b , где

а - одна сторона

b - другая сторона

Для нашего прямоугольника высота цилиндра = стороне а, а диаметр ( 2 радиуса) = стороне b. Получается S = 8*26 = 208 см²

Формула площади полной поверхности цилиндра: S = 2\pi R^{2} + \pi Rh, где

2πR² - площадь оснований

πRh - площадь боковой поверхности

У нас всё известно ⇒ подставляем значения в формулу

S = 2\pi (13)^{2} + \pi*13*8 = 338\pi + 104 \pi = 442\pi см²

Формула объёма цилиндра: V = \pi R^{2}h , где

πR² - площадь основания

h - высота

У нас всё известно ⇒ подставляем значения в формулу

V = \pi (13)^{2}*8 = 1352\pi см³

Задание 2.

(Смотри вложение 2 )

Осевым сечением конуса является треугольник.

Формула площади треугольника: S = \frac{1}{2} *a*h , где

а - основание

h - высота

Для нашего прямоугольника высота конуса = высоте сечения, а диаметр ( 2 радиуса) = основанию . Получается

S = \frac{1}{2} *8*2*19 = 152 см²

Формула площади полной поверхности конуса: S = \pi R^{2} + \pi RL, где

πR² - площадь основания

πRL - площадь боковой поверхности

У нас всё известно ⇒ подставляем значения в формулу

S = \pi (8)^{2} + \pi*8*19 = 64\pi + 152 \pi = 216\pi см²

Формула объёма конуса: V = \frac{1}{3} \pi R^{2}h , где

πR² - площадь основания

h - высота

С осевого сечения найдём высоту

По т. Пифагора:

h = \sqrt{19^{2}-8^{2} } = \sqrt{(19-8)(19+8)} = \sqrt{11*27} = \sqrt{9*11*3} =3\sqrt{33}

Теперь у нас всё известно ⇒ подставляем значения в формулу

V = \frac{1}{3} \pi (8)^{2}* 3\sqrt{33} = 64\sqrt{33} \pi см³


Дан цилиндр, высота которого равна 8 и радиус основания - 13. найдите площадь осевого сечения, площа
Дан цилиндр, высота которого равна 8 и радиус основания - 13. найдите площадь осевого сечения, площа
4,8(46 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ