1) тк в осевом сечении конуса у нас лежит равнобедренный треугольник и угол при вершине 90 градусов то значит что это прямоугольный треугольник с двумя равными катетами (образующими) по 4 дм значит гипотенуза , которая равна двум радиусам , будет равна по теореме пифагора 4 корень из 2; а равна она двум радиусам потому что высота проведённая из вершины прямого угла треугольника на основание конуса равна медиане и попадает она в центр окружности основания, получается что радиус равен 2 корень из 2; 2) площадь боковой равна пи*радиус*образующую=пи*2 корень из 2*4=8 корень из двух *пи; 3) объём равен площади основания на высоту; площадь основания пи*радиус в квадрате а высота из осевого сечения по теореме пифагора можно найти: корень из( 16 - 8)= корень из 8 = два корень из двух ; объём равен пи*8*8=64*пи извини что без рисунка возможно здесь даже есть ошибки я так представил
Найдем S(AOB):
S(AOD):S(BOC) =16:9=k2
k=4/3
k=4/3=AO/OC
S(AOB)=0,5•BL•AO
S(BOC)=0,5•BL•OC
S(AOB)/S(BOC) =(0,5•BL•AO)/(0,5•BL•OC)=AO/OC=4/3
S(AOB)/S(BOC) =4/3
S(AOB)=4/3•S(BOC)=4/3•9=12
S(ABCD)=12+12+16+9=49
Объяснение:
Площади ∆AOB и ∆DOC равны. Так как площади ∆ABD и ∆ACD равны. У них общее основание и высоты равны.
S(AOB)=S(ABD)-S(AOD)=S(ACD)-S(AOD)=S(COD)
S(AOD)≠S(BOC)
Следовательно, у этих треугольников AD и BC основания трапеции.
∆AOD ~ ∆ BOC (углы BOC=AOD как вертикальные), а
стороны пропорциональны их отношение площадей равно квадрату коэффициента подобия k.