1. Дано: КМРТ - трапеция, КМ=РТ, КТ=14 дм, МР=8 дм. МН - высота, МН=4 дм. Найти КМ.
Решение: проведем высоту РС.
МР=СН=8 дм.
ΔКМН=ΔРСТ по катету и гипотенузе, КН=СТ=(14-8):2=3 дм.
Рассмотрим ΔКМН - прямоугольный, КН=3 дм, МН=4 дм, значит КМ=5 дм (египетский треугольник).
ответ: 5 дм.
2. Дано: КМСТ - прямоугольник, Р=56 см, КТ-МК=4 см. Найти МТ.
Решение: МК+КТ=56:2=28 см. Пусть КТ=х см, тогда МК=х-4 см.
Составим уравнение: х+х-4=28; 2х=32; х=16.
КТ=16 см; МК=16-4=12 см. Тогда по теореме Пифагора
МТ=√(16²+12²)=√(256+144)=√400=20 см.
(или просто: МТ=20 см, т.к. МК:КТ=12:16=3:4; МКТ - египетский треугольник)
ответ: 20 см.
Дано:
ABCDA₁B₁C₁D₁ - Прямоугольный параллелепипед
∠ABD=60°
CC₁ = 8см
AB = 15см
----------------------------------------------------------------------------
Найти:
V(ABCDA₁B₁C₁D₁) - ?
Сначала мы находим сторону основания AD этого прямоугольника ABCD:
ΔABD - прямоугольный (∠BAD = 90°, и ∠ABD=60°) ⇒ tg∠ABD = AD/AB ⇒
AD = AB × tg∠ABD = 15 см × tg60° = 15 см × √3 = 15√3 см
И теперь мы находим объем прямоугольного параллелепипеда:
V(ABCDA₁B₁C₁D₁) = Sосн × h = S(ABCD) × СС₁ = AB×AD×CC₁ = 15 см × 15√3 см × 8 см = 225√3 см² × 8 см = 1800√3 см³
ответ: V(ABCDA₁B₁C₁D₁) = 1800√3 см³
P.S. Рисунок показан внизу↓