По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
Треугольник АВС, АВ=26, ВС=28, АС=30, ВН-высота, ВО/ОН=2/3=2х/3х, ВН=5х, МК паралельна АС полупериметр (р)=(АВ+ВС+АС)/2=(26+28+30)/2=42, площадь АВС=корень(р*(р-АВ)*(р-ВС)*(р-АС))=корень(42*16*14*12)=336, треугольник МВК подобен треугольнику АВС по двум равным углам - угол В - общий, угол ВМК=уголВАС как соответственные, в подобных треугольниках площади относятся как кваддраты соответстующих сторон(высот, медиан..), площадь АВС/площадиМВК=ВО в квадрате/ВН в квадрате, 336/площадь МВК=25*х в квадрате/4*х в квадрате, площадь МВК=53,76, площадь АМКС=336-53,76=282,24
Відповідь:
Не предлежит.
Пояснення:
-2/3 ≠ 26
-4/3 ≠ 9