Проведем окружность с центром в точке В произвольного радиуса. Точки пересечения этой окружности со сторонами угла АВС обозначим E и F.
Проведем окружность с тем же радиусом с центром в точке D. L - точка пересечения окружности с лучом DK.
Проведем окружность с центром в точке Е и радиусом EF, и такую же окружность с центром в точке L. Р - одна из точек пересечения этой окружности с первой.
Затем построим такую же окружность с центром в точке Р. Обозначим точку ее пересечения с первой окружностью N.
Через точку N проведем луч DM.
Угол MDK - искомый.
×=15
Объяснение:
пусть АВ=СА=×
СВ=×+15 тогда,
×+×+×+15=60;
3×=60-15;
3×=45;
×=45÷3;
×=15;=АВ=СА
ВС=15+15=30