У задачи решения.
если АВ перпендикулярна плоскости)
В этом случае необходимо найти АМ:
АМ:МВ = 2:3, АВ = АМ + МВ
=> 2х + 3х = 12,5
5х = 12,5
х = 2,5
АМ = 2х = 2 * 2,5 = 5 (м)
если АВ является наклонной к плоскости)
Необходимо найти расстояние от точки М до плоскости (длину отрезка МD).
Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ.
Треугольники АВС и АDМ подобны по первому признаку.
=> AM/AB = MD/BC, АВ = АМ + ВМ
MD = (12,5 * 2) / 5 = 5 (м)
Объяснение:
Площадь описанного прямоугольника 4*6=24 см²
Площади трех треугольников: 2*4/2=4 см², 6*2/2= 6см², 1*4/2=2 см², всего 12см²
Вычтем и получим искомую площадь фигуры: 24-12=12 см²-ответ с)