В равнобедренной трапеции диагональ перпендикулярна боковой стороне. найдите площадь трапеции если большее основание равно 8 √3, а один из углов трапеции равен 60 градусам
6. <ACE - внешний для угла <ACB => <ACE=<ABC+<BAC, и углы <ABC и <BAC равны по условию.
При этом <ACE=<ACD+<ECD и <ACD и <ECD также равны между собой по условию. Значит <BAC=<ACD - а это накрест лежащие углы при прямых AB и CD и секущей АС. => AB || CD чтд.
Рассмотрим два угла првильного многоугольника и треугольники построеные на них за условием задачи: Треугольники М1А2М2 и М2А3М3, они равны за первым признаком: 1) А2=А3(правильный пятиугольник); 2) М1А2=М2А3(половина стороны); 3) А2М2=А3М3(вторая половина стороны). Найдем угол М1М2М3 - он равный М2А3М3, поскольку А3М2М3=(180-М2А3М3)/2, а М1М2М3=180-2*А3М2М3=М2А3М3 - это угол пятиугольника. М1М2=М2М3 - сторона пятиугольника. Теперь применим наши суждения ко всем углам пятиугольника и увидим, что мы получили некоторую пятиугольную фигуру, у которой пять равных сторон и пять равных углов, тоисть имеем правильный пятиугольник. Думаю так...
Объяснение:
5. Есть в принципе теорема, что сумма внешних углов равно 360°. Но можно для этой задачи расписать:
α=<B+<C; β=<A+<C; γ=<A+<B - по теореме "Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом."
Получается α+β+γ=<B+<C+<A+<C+<A+<B=2*(<A+<B+<C)=2*180=360°
6. <ACE - внешний для угла <ACB => <ACE=<ABC+<BAC, и углы <ABC и <BAC равны по условию.
При этом <ACE=<ACD+<ECD и <ACD и <ECD также равны между собой по условию. Значит <BAC=<ACD - а это накрест лежащие углы при прямых AB и CD и секущей АС. => AB || CD чтд.