Внешний угол и внутренний угол при этой вершине в сумме составляют 180°, т.к. это смежные углы. Поэтому внутренний угол при этой вершине равен 180-56=124°
Высота делит равнобедренный треугольник на два равных прямоугольных треугольника. При этом высота является катетом, второй катет является половиной основания, а боковая сторона это гипотенуза. Ну возьмём один из этих треугольников. Если внимательно посмотреть на его стороны, то можно увидеть, что катет равен половине гипотенузы. А это уже известное свойство! Согласно ему катет, который лежит против угла в 30 градусов, равен половине гипотенузы. То есть, если катет равен половине этой гипотенузы, значит угол против него равен 30 градусам. Ну и вот, раз треугольник равнобедренный, то углы при его основании равны. Значит, углы треугольника- 30 и 30 и угол при вершине. Чтобы его найти, вычтем сумму известных углов из 180: 180-(30+30)=120. Значит, углы треуг. 30,30 и 120.
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2) итого
имеем для данного многоульника n(n-3)/2=35 n(n-3)=70 - не подходит, количество вершин не может быть отрицательным
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон ответ: 10
124°
Объяснение:
Внешний угол и внутренний угол при этой вершине в сумме составляют 180°, т.к. это смежные углы. Поэтому внутренний угол при этой вершине равен 180-56=124°