Окружность, вписанная в треугольник АВС с периметром, равным 20 см, делит точкой касания сторону АС на отрезки АК = 5 см, КС = 3 см. Определите, каким является треугольник: остроугольным, тупоугольным или прямоугольным?
Объяснение:
По т. об отрезках касательных АК=АР=5 см, СК=СМ=3 см.
Р=АВ+ВС+АС ,
20=(5+ВР)+(3+ВМ)+(5+3),
4=ВР+ВМ , но ВР=ВМ, тогда ВР=ВМ=2 см.
АВ= 7 см, ВС=5 см, АС=8 см .
Проверим условие а²+в² ....?....c²
7²+5²=49+25=74
8²=64 , 74>64 значит ΔАВС-остроугольный т.к. " Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон:
с² < a²+b² треугольник остроугольный. "
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Отсюда h² =12*3=36
h=6
По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет.
Меньший катет равен 3√5,
больший - 6√5
Проверка:
Квадрат гипотенузы равен (3√5)²+ (6√5)²=225
Гипотенуза равна √225=15, что соответствует условию задачи.