Теорема о 30-градусном угле прямоугольного треугольника такова: сторона, противолежащая углу 30-градусов в прямоугольном треугольнике — равна половине гипотенузы.
Против <D(30°) — лежит катет CK, тоесть: CK = KD/2 ⇒ KD = CK*2 = 14*2 = 28.
Вывод: гипотенуза раван 28 см.
5.
В треугольник есть такое свойство: против меньшой стороны — лежит меньший угол, и наоборот — против меньшего угла — меньшая сторона.
Тоесть — против самого большого угла лежит самая большая сторона(поэтому в прямоугольном треугольнике — гипотенуза всегда самая большая сторона).
Против угла A — лежит сторона BC, против угла B — сторона AC.
Имеем равнобедренный треугольник АВС, АВ = ВС = 10. Медиана АМ к стороне ВС равна √153. Медиана к основанию - это высота ВД.
Медиана разбивает треугольник на 2 равновеликих по площади. Тогда S(АВС) = 2S(АВМ). Площадь треугольника АВМ находим по формуле Герона: S = √(p(p-a)(p-b)(p-c)). Полупериметр р = (10+5+√153)/2 = (15+√153)/2 ≈ 13,684658. Подставив данные, получаем S(АВМ) = 24. Тогда S(АВС) = 2*24 = 48.
Обозначим АД - половину стороны АС - за х. Высота ВД это Н = √(10² - х²) = √(100 - х²).
Тогда площадь треугольника АВС равна: S(АВС) = (1/2)*2x*H = х√(100-х²) = 48. Возведём обе части в квадрат. х²(100-х²) = 48². Заменим х² на у. Получаем квадратное уравнение: у² - 100у + 2304 = 0. Квадратное уравнение, решаем относительно y: Ищем дискриминант: D=(-100)^2-4*1*2304=10000-4*2304=10000-9216=784;Дискриминант больше 0, уравнение имеет 2 корня: y_1=(√784-(-100))/(2*1)=(28-(-100))/2=(28+100)/2=128/2=64;y_2=(-√784-(-100))/(2*1)=(-28-(-100))/2=(-28+100)/2=72/2=36.
Отсюда находим 2 значения х = 8 и х = 6. Но второй ответ не принимаем, так как медиана АМ получается равной √97.
ответ: длина медианы, проведенной к ОСНОВАНИЮ треугольника, равна √(100-64) = √36 = 6.
4.
<K = 60° ⇒ <D = 90-60 = 30°.
Теорема о 30-градусном угле прямоугольного треугольника такова: сторона, противолежащая углу 30-градусов в прямоугольном треугольнике — равна половине гипотенузы.
Против <D(30°) — лежит катет CK, тоесть: CK = KD/2 ⇒ KD = CK*2 = 14*2 = 28.
Вывод: гипотенуза раван 28 см.
5.
В треугольник есть такое свойство: против меньшой стороны — лежит меньший угол, и наоборот — против меньшего угла — меньшая сторона.
Тоесть — против самого большого угла лежит самая большая сторона(поэтому в прямоугольном треугольнике — гипотенуза всегда самая большая сторона).
Против угла A — лежит сторона BC, против угла B — сторона AC.
И так как: ∠A < ∠B ⇒ BC < AC.
Правильного варианта в задании нет.