проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
в треугольнике на рисунке приложения
катет вс=30 см, а вн=18 - его проекция на гипотенузу.
bc²=ав•нв
900=ав•18
ав=900: 18=50 см
высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. из подобия следует отношение:
ан: ас=ас: ав
ан=50-18=32
32: ас=ас: 50 ⇒ ас²=32•50
ас=√1600=40 см
если обратить внимание на отношение катета и гипотенузы 3: 5 в ∆ всн, увидим, что этот треугольник - египетский. отсюда следует ав=50 см, (т.к. меньший катет=30). а ас=40 см. получим длины сторон треугольника, отношение которых 3: 4: 5.
подробнее - на -
опустим высоту, рассмотрим прямоугольный треугольник: в нём угол 30 гр. гипотенуза 14 другой угол 60 гр найдём высоту 14/2=7 (в прямоуг. треуг. против угла в 30 гр. лежит катет в 2 р. меньше гипотенузы)
ищем другой катет = половине основания =√(14²-7²)=√196-49=√147=7√3⇒ основание = 2*7√3=14*√3
ответ:а)
Можно методом простого подсчёта ответов
логично, что основание должно быть больше боковых сторон
ответ б) сразу отпадает ответ в) это 12,12 ⇒ они не подходят
методом исключения ответ :а)
Выбираем лучшее решение!
2. Переметр треугольник =14+14+7+7=42 см