ответ: 36 см²
Объяснение:
Площадь трапеции найдём как сумму площадей четырёх треугольников, образованных диагоналями.
1. Рассмотрим ΔBOC и ΔCOD.
Проведём из точки C перпендикуляр CH к стороне BD. Получим, что CH является высотой и ΔBOC, и ΔCOD. Выпишем формулы площади для этих треугольников:
Найдём частное этих площадей:
2. ∠BCA = ∠CAD (накрест лежащие углы при BC || AD и секущей AC)
∠CBD = ∠BDA (накрест лежащие углы при BC || AD и секущей BD)
3. Рассмотрим ΔBOC и ΔAOD:
1) ∠BCA = ∠CAD
2) ∠CBD = ∠BDA
Следовательно, ΔBOC и ΔAOD подобны по двум углам.
Причём k = OC : OA = OB : OD = 1/2 ⇒ OA = 2OC
4. Рассмотрим ΔBOC и ΔAOD. Отношение площадей подобных треугольников равно квадрату коэффициенту подобия. То есть:
5. Рассмотрим ΔBOC и ΔABO.
Проведём из точки B перпендикуляр BK к стороне AC. Получим, что BK является высотой и ΔBOC, и ΔABO. Выпишем формулы площади для этих треугольников и преобразуем SΔABO:
6. Найдём площадь трапеции:
– катеты; AB=c – гипотенуза.
Также в прямоугольном треугольнике сумма острых углов равна : .
Для прямоугольного треугольника также верна теорема Пифагора: .
Введём теперь понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника.
Определение синуса, косинуса и тангенса острого угла прямоугольного треугольника
Определение
Синусом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к гипотенузе.
, .
Определение
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего к этому углу катета к гипотенузе.
, .
Определение
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего этому углу катета к прилежащему катету.
, .
Связь катетов и гипотенузы, двух катетов через тригонометрические функции угла
С введённых понятий можно находить катеты или гипотенузу.
Например, из формулы: . Аналогично: .
Также можно получить формулу для связи длин двух катетов: .
Связь синуса и косинуса двух острых углов прямоугольного треугольника
При решении задач очень важно знать соотношения между синусом, косинусом и тангенсом острого угла прямоугольного треугольника.
Рассмотрим следующие две формулы: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:
Аналогично получаем: . Так как сумма острых углов прямоугольного треугольника равна , то формула приобретает следующий вид:
Формула, связывающая тангенс с синусом и косинусом
Докажем теперь важную формулу, связывающую тангенс с синусом и косинусом:
Доказательство независимости значения тригонометрических функций от размеров треугольника
Доказательство
Запишем определение синуса и косинуса острого угла прямоугольного треугольника: , . Тогда: . Доказано.
Аналогично: .
Рассмотрим следующую важную задачу.
Задача
Даны прямоугольные треугольники . Кроме того, .
Доказать:.
Доказательство
(так как оба треугольника прямоугольные с равными острыми углами). Значит, выполняется следующее соотношение: .
Отсюда получаем: .
.
.
Доказано.
Вывод: синус, косинус и тангенс не зависят от треугольника, а зависят только от угла.
Основное тригонометрическое тождество
Сформулируем и докажем одну из важнейших теорем, связывающих синус и косинус острого угла прямоугольного треугольника, – основное тригонометрическое тождество.
Основное тригонометрическое тождество: .
Примечание:
Доказательство
, тогда: (при доказательстве мы пользовались теоремой Пифагора: ).
Доказано.
Рассмотрим пример, иллюстрирующий связь тригонометрических функций.
Решение примера
Дано: – прямоугольный (), .
Найти:
Решение
Воспользуемся основным тригонометрическим тождеством: . Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: .
Найдём теперь тангенс угла, пользуясь формулой: .
ответ: .
На этом уроке мы рассмотрели понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов.
Список литературы
Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Фестиваль педагогических идей "Открытый урок" (Источник).
Xvatit.com (Источник).
Egesdam.ru (Источник).
Домашнее задание
№ 133(а-г), 134(а-г), Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
Найдите синус, косинус и тангенс наименьшего угла египетского треугольника.
Найдите косинус и тангенс острого угла прямоугольного треугольника, синус которого равен .
Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур