Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
Единичный тетраэдр - треугольная пирамида, длина каждого ребра которой равна единице. Следовательно, пирамида МАВС - правильная, все ее грани - правильные треугольники.
Данное сечение - треугольник, высота которого равна высоте МО пирамиды, а основание - высоте АН основания пирамиды.
Основание О высоты правильной пирамиды - точка пересечения высот ( медиан, биссектрис) основания АВС.
АО=радиусу описанной окружности.
АО=R=a/√3=1/√3 (по формуле радиуса описанной окружности).
По т.Пифагора из ∆ АМО высота
МО=√(AM²-AO²)=√(1-1/3)= \sqrt{ \frac{2}{3}
S ∆ MAH= MO•AH:2 =\sqrt{2}: {4}
2
:4
Объяснение:
держи)
ответ:все в приложеном фото
Объяснение: